English | 简体中文 | 繁體中文 | Русский язык | Français | Español | Português | Deutsch | 日本語 | 한국어 | Italiano | بالعربية

Algorithmes de classement des pages et leur implémentation en Python

L'algorithme de PageRank s'applique aux pages web. Les pages web sont des graphes orientés, et nous savons que les deux composants principaux d'un graphe orienté sont les nœuds et les connexions. Une page est un nœud, un lien hypertexte est une connexion, c'est-à-dire une connexion entre deux nœuds.

Nous pouvons trouver l'importance de chaque page à l'aide de PageRank, et c'est précis. La valeur de PageRank est une probabilité entre 0 et1entre.

La valeur de PageRank d'un seul nœud dans le graphique dépend des valeurs de PageRank de tous les nœuds connectés, et ces nœuds se connectent périodiquement aux nœuds auxquels nous voulons attribuer un rang. Nous utilisons la méthode d'itération de convergence pour assigner les valeurs à PageRank.

Exemple de code

import numpy as np
import scipy as sc
import pandas as pd
from fractions import Fraction
   def display_format(my_vector, my_decimal):
      return np.round((my_vector).astype(np.float), decimals=my_decimal)
      my_dp = Fraction(1,3)
      Mat = np.matrix([[0,0,1],
      [Fraction(1,2),0,0],
      [Fraction(1,2,1,0]])
      Ex = np.zeros((3,3))
      Ex[:] = my_dp
      beta = 0.7
      Al = beta * Mat + ((1-beta) * Ex)
      r = np.matrix([my_dp, my_dp, my_dp])
      r = np.transpose(r)
      previous_r = r
   for i in range(1,100):
      r = Al * r
      print (display_format(r,3))
if (previous_r == r).all():
   break
previous_r = r
print ("Final:\n", display_format(r,3))
print ("sum", np.sum(r))

Résultat de la sortie

[[0.333]
[0.217]
[0.45 ]]
[[0.415]
[0.217]
[0.368]]
[[0.358]
[0.245]
[0.397]]
[[0.378]
[0.225]
[0.397]]
[[0.378]
[0.232]
[0.39 ]]
[[0.373]
[0.232]
[0.395]]
[[0.376]
[0.231]
[0.393]]
[[0.375]
[0.232]
[0.393]]
[[0.375]
[0.231]
[0.394]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
[[0.375]
[0.231]
[0.393]]
Final:
[[0.375]
[0.231]
[0.393]]
sum 0.9999999999999951